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quired. Needless to say, practical testing of both 
methods indicated in the present paper is needed. In 
our laboratory, a computing program for the least- 
squares approach to triclinic space groups is under 
preparation. 

References 

ANZENHOFER, K. & HOPPE, W. (1962). Phys. Verh. 13, 119. 

DIDEBERG, O. (1977). Acta Cryst. A33, 520-521. 
HOPPE, W. (1962). Naturwissenschaften, 49, 536-537. 
HOPPE, W. (1963). Acta Cryst. 16, 1056-1057. 
KARLE, J. (1972). Acta Cryst. B28, 3362-3369. 
MAIN, P. & WOOLFSON, M. M. (1962). Phys. Verh. 13, 

118. 
MAIN, P. & WOOLFSON, M. M. (1963). Acta Cryst. 16, 

1046-1051. 
WILSON, A. J. C. (1949). Acta Cryst. 2, 318-321. 

Acta Cryst. (1979). A35, 220-224 

A New Monte Carlo Method for Phase Determination 

BY AKIO FURUSAKI 

Department of  Chemistry, Faculty of  Science, Hokkaido University, Sapporo 060, Japan 

(Received 17 July 1978; accepted 6 September 1978) 

Abstract 

An extended version of the multi-solution method has 
been devised by introducing a Monte Carlo technique. 
This Monte Carlo direct method differs from the 
ordinary multi-solution procedure in two respects: (1) 
The starting set usually consists of as many as 10-50 
phases; (2) Tentative phase values assigned to the 
members of the starting set are derived from suc- 
cessively generated random numbers. The application 
of the new method to several unknown structures has 
shown that it can be used as an effective means of 
phase determination. 

Introduction 

The direct methods of phase determination have now 
made it possible to determine unknown structures of 
complicated organic compounds without converting 
them into heavy-atom derivatives. These excellent 
results may give one a false impression that the phase 
problem would have been completely solved. However, 
especially in noncentrosymmetric cases, there seem to 
be a good many structures whose analyses end in 
failure. It has been pointed out that the probable cause 
of such a failure is that some phase relationships 
produce grave errors early in the phase determination 
(Karle, Karle & Estlin, 1967; Karle, Gibson & Karle, 
1969).* If this is the case, it is very hard to overcome 
the difficulty, because it is practically impossible to find 

* It has recently been reported that there exist structures which 
the tangent formula itself is inadequate to solve (Lessinger, 1976). 
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the serious trouble-makers among the many phase 
relationships at the early stage of the analysis. 
Although a promising way of doing this is to add some 
additional phases to the starting set, it causes a great 
increase in the number of phase sets to be treated. A 
method which has been developed to surmount this new 
obstacle is the magic-integer technique (White & 
Woolfson, 1975; Declercq, Germain & Woolfson, 
1975). 

When applying the multi-solution method (Germain 
& Woolfson, 1968), one sometimes finds that two or 
more phase sets appearing in succession lead to the 
correct solution. In this case, generally speaking, one 
will be able to reach the correct solution earlier by 
making the phase sets appear in completely random 
order rather than in systematic order, because the dis- 
persion of the successive, essentially correct phase sets 
remarkably decreases the average number of trials 
necessary for finding the correct solution. The larger 
the starting set, the more frequently such a case must 
be met. Accordingly, the introduction of a Monte Carlo 
technique seems to afford a new method for solving the 
difficulty in phase determination. 

Although the use of a Monte Carlo method for X- 
ray structure analysis was proposed by Vand, Niggli & 
Pepinsky (1960), the idea now appears to have been 
given up. One of the main causes of the failure is 
probably that the optimal-shift method (Niggli, Vand & 
Pepinsky, 1960) cannot refine random structures 
sufficiently well. On the other hand, the tangent formula 
(Karle & Hauptman, 1956) often shows remarkable 
ability in the refinement of phases. This suggests that it 
may be more promising to use generated random 
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numbers as phase angles rather than as atomic 
coordinates. 

In view of the foregoing circumstances, the author 
has now attempted to develop a new phase-deter- 
mining method, hereafter referred to as the Monte 
Carlo direct method. 

Basis of the method 

As an example, let us consider a set of M two- 
dimensional and N - M general reflections in space 
group P21212 ~. If we assume that every general 
reflection may arbitrarily take one of the eight dis- 
crete phase values 0, +z r/4, +z t/2, +3zc/4 and ~r, the 
total number of possible sets of phase values is 23N-2u 
for all reflections. Of these phase sets, sixteen corres- 
pond to the correct structure, provided that those sets 
which can uniquely specify the origin and enantio- 
morph are included among the N reflections. There- 
fore, the probability of hitting on any one of the correct 
phase sets is given by P = 1/2 3N-2M-4. This prob- 
ability falls off rapidly as N increases; for example, P ~ 
10 -5 f o r N =  10, M =  5 a n d P  ~ 10 - ~ f o r N = 2 0 ,  
M ---- 10. Such low values may throw doubt upon the 
practicability of the Monte Carlo direct method. How- 
ever, the actual value for the probability of obtaining 
the correct structure must be considerably higher than 
P, because, in addition to the sixteen correct phase sets, 
there will be a considerable number of phase sets which 
can lead to the correct structure by the aid of the 
tangent formula. It is probably impossible to derive this 
actual probability, p, in a theoretical manner. There- 
fore, the author has initially tried to obtain the values of 
p for the following known structures empirically: (1) 
coronafacic acid (hereafter CFA), C12H1603, P212121, 
Z ---- 4 (Ichihara, Shiraishi, Sato, Sakarmura, Nishi- 
yama, Sakai, Furusaki & Matsumoto, 1977); and (2) 
grayanotoxin XV (hereafter GXV), C20H3004, 
P2~2~2~, Z = 4 (Hamanaka, Miyakoshi, Furusaki & 
Matsumoto, 1972). 

For the N reflections to which random phase values 
were assigned, those with the largest E values were 
chosen in all cases except one; for N = 7 in CFA the 

necessity of specifying the origin did not allow such a 
choice. For each of the random phase sets, 8-10 cycles 
of the tangent iteration were performed using E values 
> 1.30, and then the resulting phase set was compared 
with the known correct set. This procedure was 
repeated until 3-7 correct phase sets appeared. The 
average number of trials necessary for finding a correct 
phase set (that is, the value of 1/p) has thus been 
obtained. The results are shown in Fig. 1. 

First, it should be noted that, in general, the values 
for 1/p are much smaller than could be expected: 15- 
40 for CFA and 22-66 for GXV. This shows that, 
compared with the conventional direct methods, the 
present procedure will not always entail great cost. It is 
also surprising to see that, over the range of N values 
up to 40 or 60, the value of lip increases with N 
approximately linearly, not exponentially. From these 
two examples, the slope of a straight line expressing the 
relationship between N and 1/p does not generally 
seem to be very steep, although it may vary more or 
less from structure to structure. Consequently, even 
though one adopts a starting set of several tens of 
phases, one can continue the phase determination 
without great disadvantage. This is very important, 
because the use of such a large starting set may make it 
possible to surmount various difficulties which the 
symbolic addition and multi-solution methods (Karle & 
Karle, 1966; Germain & Woolfson, 1968) have 
encountered. 

Let us examine a little more closely the case when N 
= 30, M = 15 for CFA. In this case, from the value of 
23 for 1/p, it follows that of the 1018 possible phase 
sets no less than 5 × 1016 afford the correct solution. 
Table 1 gives seven of these essentially correct phase 
sets. 

For the sake of comparison, the phase sets have been 
adjusted so as to correspond to the same origin and 
enantiomorph. As can be seen in Table 1, in most of the 
seven phase sets, even the five strongest reflections are 
not always assigned phase values close to their correct 
ones. It is interesting that, as the tangent procedure is 
repeated, every one of these random phase sets 
approaches the correct phase set given in Table 1. 

1/p  

60 

40 ~ 

~o ~ 

1/p  

60 // 
20 40 60 N 20 40 N 

Fig. 1. The average number of trials necessary for finding the 
correct structure. (a) CFA. (b) GXV. 

Procedure 

The Monte Carlo direct method resembles the multi- 
solution procedure, but differs from the latter in 
two respects: (1) The starting set is usually made up of 
as many as 10-50 phases; (2) Tentative phase values 
assigned to the members of the starting set are derived 
from successively generated random numbers. Some 
points to which special attention should be paid in the 
present procedure are mentioned below. 

Although the present method requires that the 
starting set should contain reflections appropriate to 
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Table 1. Seven essentially correct phase sets for N = 30, M = 15 in CFA 

Phase values are in 10 -3 z~. Correct phases were calculated with the final atomic parameters. 

h k l IEI Correct No. 10 No. 38 No. 51 No. l16 No. 126 No. 162 No. 163 

1 3 14 1 3.54 1022 1000 1500 1000 1000 1500 750 1000 
2 7 6 0 3-20 500 1500 500 1500 500 500 500 500 
3 0 12 6 3.12 1000 1000 1000 1000 1000 0 0 0 
4 7 6 2 3.08 286 1250 250 250 500 500 750 O 
5 3 6 1 3.06 1960 0 0 250 1750 1750 0 1000 
6 0 1 4 2.91 500 500 500 500 500 500 500 500 
7 6 8 1 2-90 1565 1750 1250 1750 1500 1250 1500 0 
8 0 13 7 2.89 500 500 500 500 500 500 1500 500 
9 4 0 1 2.82 500 500 500 500 1500 500 500 500 

10 1 1 8 2.82 483 500 750 1250 1750 750 500 1000 
I1 5 11 1 2.64 73 750 250 1750 1750 0 250 0 
12 0 1 2 2-60 500 500 500 1500 500 1500 500 500 
13 10 3 1 2.60 1461 1250 0 1000 1750 1250 1500 1250 
14 6 8 0 2.59 0 0 0 1000 1000 0 1000 0 
15 5 9 3 2.59 310 1000 750 500 1250 0 750 250 
16 8 13 0 2-58 1000 1000 0 0 1000 0 1000 1000 
17 1 14 0 2.58 500 500 500 500 500 500 1500 500 
18 1 14 1 2.57 972 1000 1250 1250 1250 1750 750 1000 
19 5 9 1 2.47 146 0 500 250 0 1750 500 250 
20 7 5 0 2.42 1500 1500 1500 1500 1500 500 1500 1500 
21 7 2 1 2.41 24 1000 750 250 1750 1750 250 250 
22 6 7 4 2.38 577 1000 750 500 0 500 250 500 
23 3 16 1 2.38 1087 1250 0 1250 1500 1000 1000 1000 
24 7 3 0 2.36 1500 500 1500 500 1500 500 1500 1500 
25 7 6 4 2.34 164 1750 1000 0 0 0 500 0 
26 10 4 0 2-34 1000 0 1000 0 0 0 0 1000 
27 2 15 3 2.33 77 0 500 250 0 1500 0 500 
28 0 3 4 2.32 500 500 1500 500 1500 500 500 500 
29 7 4 0 2.32 500 500 1500 500 500 1500 500 500 
30 8 5 0 2.23 1000 1000 0 0 0 0 1000 0 

specify the origin and enan t iomorph  (Karle & 
H a u p t m a n ,  1961), there is no necessity for assigning 
definite phase  values to these reflections. This is 
because the origin and enan t iomorph  can be defined 
natura l ly  by accidental  ass ignment  of r andom phase 
values. Since there are usually such origin- and enantio- 
morph-specifying reflections among the first 10-20  
strongest,  one may  choose the strongest  reflections 
automat ica l ly  for the starting set. 

R a n d o m  numbers  can be easily obtained as values 
between 0 and 1 by utilizing an available computer  
program.  Each  of the projection reflections whose 
phases  may  only assume such special values as 0 or zc 
and zr/2 or 3rc/2 is assigned either of the two possible 
values according to the value of  a given r andom 
number,  x ;  for example,  the value assigned is 0 for 0 _< 
x < 0.5,  whereas it is zc for 0.5 < x < 1. Al though,  in 

this study, the eight discrete values of 0, +7r/4, +zd2, 
+3zd4 and zr were used as possible phase values for 
general reflections, the use of  such cont inuous quanti-  
ties as 2zcx also probably  gives good results. 

After a complete set of  r andom phase  values has 
been generated,  in order  to extend this phase  set, about  
10 cycles of  the tangent  procedure are performed using 
E values > 1 .20 -1 .50 .  Dur ing the repetition of  the first 
several cycles of the tangent  procedure,  the phase 

values which have been assigned to the start ing 
reflections are held cons tant  in order that  the r andom 
phase set may  not lose its essential feature. 

As in the case of  the multi-solution method,  here 
also, the question arises as to how the correct  phase  set 
can be dist inguished from the others. As will be seen in 
the next section, the value of R~ = ~[IEol -- 
kLEclV~ IEol (Karle  & Karle, 1966) serves as a good 
guide for this distinction. After the tangent  i teration, the 
R K value of the resulting phase set is compared  with 
those which have already been produced. When  the R K 
value shows a marked  decrease or a marked  tendency  
to decrease, several further cycles of the phase  refine- 
ment  are carried out, and then an E map is calculated 
and examined.  Genera l ly  speaking, the larger the size of  
the start ing set, the larger the number  of cycles of the 
tangent  procedure necessary  for catching the correct  
phase set. I f  the R~ value is combined with another  
index, for example the q value defined by (Hoppe,  
G a s s m a n n  & Zechmeister ,  1970) 

q= l--~h 'Ehl{l ~k IEkEh-k I 

× exp [ i ( ~  + CPh_k)]l/~ IEkEh-kl}/~ IEhl 
k I l h  

it may  also be useful in space groups,  such as P1 and 



A K I O  F U R U S A K I  223 

C2, in which it becomes very small when all phase 
values vanish; for the correct phase set must not only 
have a low value of R K but also a moderately high 
value of q. A concrete example in space group C2 is 
given in the next section. 

Since many reflections are contained in the starting 
set, it is possible that there may be some phase relation- 
ships among them. These phase relationships can be 
taken into account in the following way. If  the phase 
relationship among three phases ~0h, ~0k and (~h-k is 
expressed by the equation ~0h = Ck + tPh-k + Jh, k, then 
the random variable fih,k must have the probability dis- 
tribution (Karle & Karle, 1966) 

X2N-1 divide the range 0 < x _< 1 into 2 N  regions pro- 
portional to S 1 - s,  . . . ,  S N- i and S N respectively. There- 
fore, if the value of a given random number, x,  falls 
between Xm_ ~ and X m, it is reasonable to assign the 
value of (m - N ) n / N  to the variable fib, k. While the 
values for ~Pk and ~0h-k are calculated directly from given 
random numbers in the usual way, that for ~Ph is 
obtained by substituting the fih, k, ~Pk and tPh-k values into 
the phase relationship Ch = ~Pk + ~Ph-k + fiXk" 

Applications 

f ( x )  = [2nIo(a)] -1 exp (acosx) ,  

where I o is the zero-order modified Bessel function of 
the first kind, and a = 2(Y z~  ( ~  Zj~ .-3/2 IEhEkEh_k I. 
In order to derive reasonable values for ~h,k from 
uniformly distributed random numbers, it is first 
necessary to evaluate the following integrals which give 
approximate estimates for the probability that 6h,k will 
assume the value of nzc/N (n = 1 - N, 2 - N, . . . ,  N): 

(2n + I)~/2N 
S , =  f f ( x )  dx .  

(2n-- 1)n/2N 

Here it is assumed that ~h,k takes any of the 2N dis- 
crete values of nrc/N. Next, let us define X m by X 0 = 0 
and 

rn -- N 

X m =  Z an ,  m =  1 ,2 ,  . - . ,  2N.  
n=l--N 

Since XEN = l, 2 N -  1 points at x = X~, X2, . . . ,  

Five new structures have quite recently been elucidated 
by the application of the Monte Carlo direct method. 
The crystallographic data  for the five compounds and 
the main points of their structure determinations are 
summarized in Table 2. 

For each of the five crystals, the intensity data  with 
20 values up to 140 ° were collected on an automatic 
four-circle diffractometer, using Cu Kct radiation 
monochromatized with a LiF crystal. After correction 
for the Lorentz and polarization factors, these inten- 
sities were converted into normalized structure factor 
magnitudes (IEl 's) .  All the phase determinations were 
carried out according to the procedure described in the 
preceding section. In every case, the strongest reflec- 
tions were adopted for the starting set. Although the 
maximum number of pairs of tPk and ~0h-k used for the 
evaluation of ¢Ph in the tangent procedure was limited to 
50, this showed no signs of hindering the progress of 
the phase determination. In this manner,  the five 
structures could be solved with little difficulty. Some of 
the results are shown in Table 2. With the intention of 

Table 2. Crystal  data and some key points o f  the structure determinations 

Compound (I)* (II) (III) (IV) (V) 

Formula C loH16N205 C20H2804 C20H320 5 C28H26N40 3 C22H340 6 
.3H20 .CH3OH .0.5H20 

Space group P21 P2~2121 P212121 C2 P21212~ 
a (A) 10-499 9-500 10.040 23-487 17-503 
b (A) 12.812 21.524 26.517 7.636 37.933 
c (A) 5.322 8.758 6.672 15-638 6-371 
fl 98°32 ' 116043 ' 
Z 2 4 4 4 8 
Size of the starting set 20 10 20 20 30 
E values used 331 (>1.20) 380 (_>1.30) 421 (_>1.30) 487 (_>1.30) 932 (>1.30) 
Correct phase set No. 54 No. 40 No. 3 No. 72 No. 261 
Cycles of t he tangent procedure 10 (16) 10 10 (12) 12 12 (20) 
Rt¢ value (%) 28.2 (18.8) 23.5 24.6 (24.1) 27.4 34.4 (27.6) 
Phases obtained 306 (329) 367 406 (407) 458 796 (864) 
Atoms found in the E map 20 24 25 33 56 
Hydrogen atoms found in the D map 22 28 32 25 68 
Data used for the refinement 1377 1871 1908 2532 4180 
Final R value (%) 3.1 4-5 3.8 4-7 5.5 

* The five compounds are: (I) palythine trihydrate; (II) 5 fl,6fl-(dimethylmethylenedioxy)- 15,16,17-trinorgrayan- 10(20)-ene-3,14-dione; 
(III) grayanotoxin II; (IV) AM-2282 methanol solvate; (V) grayanotoxin XVI hemihydrate. 
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subjecting the present method to severe tests, in all 
these phase determinations no account was taken of 
phase relationships among the starting reflections. The 
phase determinations for (I)-(IV) were accomplished in 
moderate computing time; for instance, the time 
required for (IV) was about 8 min on a FACOM 230- 
75 computer at the Computing Center of Hokkaido 
University. On the other hand, the phase determination 
for (V) took about 1 h. However, it seems possible to 
reduce this computing time considerably by utilizing 
phase relationships among the starting reflections in the 
manner given in the preceding section. The details of 
the structures will be published separately. For (IV) and 
(V), which possess the most complex crystal structures, 
a more detailed description is given below. 

Since (IV) belongs to space group C2, the most 
important problem in the phase determination was how 
to discriminate the correct phase set. As previously 
mentioned, values of R g and q were used for this dis- 
crimination. As the calculation proceeded, it gradually 
became apparent that the phase sets with R K values 
below 30% could be grouped into three classes with 
respect to their q values: (1) 0%, (2) 15-18% and (3) 
36-40%. Of the 72 phase sets obtained, only two 
belonged to the last class. The 72nd phase set, which 
was one of the two, turned out to be correct. The 
resulting E map showed 33 of the 37 independent non- 
hydrogen atoms. 

The structure determination of (V) involved a risk of 
getting into trouble, because there were as many as 57 
non-hydrogen atoms in the asymmetric unit of this 
crystal. With the intention of diminishing this risk, a 
starting set of 30 phases was adopted. After 12 cycles 
of the tangent procedure, an R g value for the 261st 
phase set showed a marked tendency to decrease, 
although it was still 34.4%. Eight additional cycles of 
the tangent iteration reduced the R g value to 27.6%. 
An E map thus obtained yielded all the non-hydrogen 
atoms except one, which was later found to occur in 
two statistical positions. 

We have so far confined our remarks to noncentro- 
symmetric cases. It should be stated here that the 
Monte Carlo direct method is also applicable to centro- 
symmetric structures. As examples of such a case, the 
structure determinations of the following two crystals 
are cited: (1) o,p-dinitrocinnamyl acetate, C l lH10N206, 
P21/c, Z = 4; and (2) 3-(1-ethoxyaminopropylidene)-6- 
ethyl-2,3-dihydro-4H-pyran-2,4-dione, C 12 H 17NO4, 
C2/c,  Z = 8. Each of these two phase determinations 
was based on a starting set of 10 reflections; in the 
latter case, not all these reflections were the strongest. 
Almost the same procedure as that for noncentro- 
symmetric structures was used. The 1st and 14th phase 
sets gave the respective correct solutions. The details 
will be given elsewhere. Thus, it has been proved ~a t  

the present phase-determining method is widely applic- 
able. 

Concluding remarks 

If the starting set in the multi-solution procedure is 
employed in the present method just as it is, then these 
two methods come to the same, except that the order in 
which the phase sets are dealt with differs. Hence, the 
present method may be regarded as an extended 
version of the multi-solution procedure. 

It has now been shown that the Monte Carlo direct 
method is an effective means of phase determination. If 
the free use of a large high-speed computer were 
permitted, even the structures of considerably com- 
plicated compounds might be solved by this method. 
Accordingly, as highly efficient computers become 
more available in the future, the present method will 
play a more important role in X-ray structure 
elucidation. 
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